
Adversarial AI to Prevent
Microarchitectural Website

Detection Attacks

Sddec21-13
Advisor/Client: Berk Gulmezoglu
Team: Ege Demir, Sean McClannahan,
Aaron Anderson, Thane Stoley

sddec21-13.sd.ece.iastate.edu

Problem Statement

● Privacy oriented browsers like chrome and TOR offer

no protection against microarchitectural attacks

● There is no current software/browser based tools to

defend against these attacks

● Most proposed solutions rely on processor hardware

changes
○ Intel has not made these changes yet

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Problem Statement

● What are microarchitectural attacks?
○ Exploitation of the lowest level cache (LLC)

○ Memory access patterns

○ Website detection

● Previous work
○ Approximately 80% accuracy (for 100

websites)

● Browser time measurement resolution
○ Firefox: 2 ms

○ Chrome: 0.1 ms

○ Tor: 100 ms

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Conceptual Sketch

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Functional Requirements

● We will have a Javascript-based cache monitoring code

● We will have a Python-based neural network that identifies websites based on output

from cache monitoring javascript code

● We will use a Python-based adversarial AI tools to introduce artificial noise in cache to

reduce classification rate of our attacker code.

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Non-functional Requirements

● Must not increase system overhead by more than 25%

● Works with more than one browser

● Attacker code must be able to identify with an accuracy rate of 80% for 50 websites

● Defense code must lower accuracy of attacker code by at least 60%

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Technical Constraints & Considerations

● Cache fingerprint changes based on individual’s processor architecture

● The browser will also affect the cache fingerprint.

● We can’t cover every website. Doing that is next to impossible to accomplish. We are

aiming for 50 websites.

● As websites are updated, we will need to retrain our algorithm for the new configuration.

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

What Makes Our Project Unique?

● Common vulnerability in all browsers

● Fairly new and not much is known about

preventing architectural attacks

● New architecture design is necessary to for

absolute security

● These problems makes it hard to defend

against attack

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Possible Risks and Mitigation

● In creating artificial noise in an attempt to stop attack, it is liable to cause slowdown on

other processes.
○ Adversarial AI tools will be utilized to reduce the strain on the system as much as realistically

possible.

● Because of the nature of operating systems, it is

expected for other processes to be using cache at

the same time, which introduces unnecessary noise

during data collection.
○ Correct Linux distribution will be identified so that

processes running in the background can be minimized

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

System Design - Functional Decomposition

1. Data Collection Script
a. Written in JavaScript
b. Automates cache fingerprint data

collection over a set period of time

2. Neural Network
a. Fed data from data collection script
b. To be trained to detect website usage

based on cache.

3. JavaScript Defense Code
a. Dynamic cache usage modification
b. Creates artificial noise in cache
c. Adversarial AI is utilized to know exactly

when to create the noise

4. Performance Measurement
a. Timing of operations
b. Classification rate

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Deeper Design Dive

1. Neural Network
a. Using tensorflow to train neural network.

i. Weights are based on time it takes to access array
b. Tries to guess website from list of 50

i. This is based on cache fingerprint
2. Data Collection Script

a. Creates array
i. Keeps accessing array until entire cache is nearly filled

b. Continues to try to access array
i. Records time it takes to access array every (unit)

c. Runs for a set time period (30 seconds)
i. Outputs data as a JSON file

3. JavaScript Defense Code
a. Utilizes adversarial AI tools to determine exactly when to introduce noise

4. Performance Measurement
a. Classification Rate
b. Processor usage
c. Calculate performance before and after running defense code

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Resources and Cost

● RTX-3090 for training neural network

● Laptop with Linux based operating system capable of network access

● Funds are not necessary

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Schedule and Milestones

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Task Hours (estimating 10 hours per week) Reasoning

Research & Develop a Javascript-based cache
monitoring code

50 hours/5 weeks This estimate includes coding and testing. This
code is a very important part of our project and
needs to be working extremely well.

Develop and train a Neural Network to identify
websites based on cache fingerprint

40 hours/4 weeks Developing and training a neural network is
going to be a very time consuming process. Only
one member of our group has worked with A.I
before so we are estimating this task will be very
difficult.

Offer an adversarial AI based mathematical
solution to change cache usage dynamically
when a specific website is visited

30 hours/3 weeks This estimate is based on the amount of
estimated testing we will need to confirm our
algorithm.

Develop a new Javascript-based defense code
integrated with our solution

30 hours/ 3 week This process should not take too long as we will
simply create noise at a certain time to trick the
attacker code.

Optimizing performance overhead 20-30 hours/ 2-3 weeks It is hard to estimate how much time this will
take because optimization can be very difficult.
However, there is a chance that we get very
close to the benchmark right away.

Technology Platforms Being Used

● We are using JavaScript and Python

● Browsers will be Google Chrome and Firefox-based Tor browser

● Operating system will be Linux

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Test Plan

● Attack code and defense code will be running at the same time

● Send data from attack code to neural network

● See if neural network is able to classify a lower percentage of websites

● Data will be one-dimensional, so we will be using one-dimensional adversarial AI

techniques

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

(Gibbon for reference)

Current Status of Project

● We fully understand how the cache monitoring code works and operates

● We are working towards automating data collection

● We are also starting to prototype a potential neural network design.

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Task Distribution

1. Research JavaScript-based cache usage monitoring code.
a. Cache attack research

b. Testing

2. Develop deep learning-based website detection mechanism.
a. Develop algorithm for neural network

b. Python-based AI code

c. Training neural network

3. Mathematical solution to change cache usage dynamically when a website is visited.

4. Optimize Performance.
a. Timing information

b. Develop to hit target level of accuracy and system performance

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

QUESTIONS?

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

THANKS FOR LISTENING

Sddec21 - 13: Adversarial AI to Prevent Microarchitectural Website Detection Attacks

